
V, , _ T ;? FILE COPY ,. ,
JNCLASSIFIED - L MASTER COPY- FOR REPRODUCTION PURPOSES

:CURITY CLASSIFICATION OF THIS PAGE
r 1TP0CUMENTA10N PAGE!

I&. REPORT SECURITY CLASSIFICATION b. RESTRICTIVE MARKINGS

..... Ie ACCICIfT3O AUTHOMYI 3. DISTRIBUTION/ AVAILAS1UTY OF REPORT

PApproved for public release;
S U I distribution unlimited.

A D -A 225 897 S. MONITORING ORGANIZATION REPORT NUMBER(S)

6|. NAME OF PERFORMI ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME.OF-MONITQRING-ORGANIZATION
Center of Excellence in AI (f a Wkabe) N R RA A
University of .Pennsylvania U. S. Army Research Office

6c. ADDRESS (Cty, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Dept. of Computer & Information Science P. 0. Box 12211200 S. 33rd Street
Philadelphia, PA 19104-6389 \ Research Triangle Park, NC 27709-2211

8a. NAME OF FUNDING/SPONSORING Sb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION -NUMBER
ORGANIZATION I k apliable)

U. S. Army Research Office ____o__-__--0 0 3I
Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

P. 0. Box 12211 PROGRAM PROJECT TASK [WORK UNIT
Research Triangle Park, NC 27709-2211 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Securty Clasfflation)
(MS-CIS-89-,06)
A Connectionist System for Rul'e Based Reasoning with nulti-Place Predicates and Variables

12. PERSONAL AUTHOR(S)
Lokendra Shastri and Venkat Ajjanagadde

13a. TYPE OF REPORT . 13b. TIME COVERED 114. DATE- OF REPORT (Year, Mont, Day) 5. PAGE COUNT
Interim technical I FROM TO I January 1989 31

16. SUPPLEMENTARY NOTATION The view, opinions and/or findings contained in this report are those

of he authqr(j).and should not be construed as. an 5fficial Department of the Army position,
17. COSATI CODES 18. SUBJECT TERMS (Contmue on rever if necessary and identify by block number)

FIELD GROUP SUB-GROUP

Connectionism, knowledge representation

1,., 19. ABSTRACT (Contine on reverse if necessay and iAemnft by block number)

McCarthy has observed that the representational power of most connectionist systems is resticted to unary
predicates applied to a fixed object. More recently, Fodor and Pylyshyn have made a sweeping claim that connectionist
systems cannot incorporate systematicity and compositionality. These comments suggest that representing structured
knowledge in a connectionist network and using this knowledge in a systematic way is considered difficult if not
impossible. The work reported in this paper demonstrates that a connectionist system can not only represent
structured knowledge and display systematic behavior, but it can also do so with extreme efficiency. The paper
describes a connectionist system that can represent knowledge expressed as rules and facts involving multi-place
predicates (i.e., n-ary relates), and draw limited, but sound, inferences based on this knowledge.4-h- tern is
extremely efficient - in fact, optimal, as it draws conclusions in time proportional to the length of the proof. It
observed that representing and reasoning with structured knowledge requires a solution to the variable binding
problem. A solution to this problem using a multi-phase clock is proposed. The solution allows the system to
maintain and propagate and also identifies constraints on the structure of inferential dependencies and the nature of
quantification in individual rules that are required for efficient reasoning. These constraints may eventually help in
modelling the remarkable human ability of performing certain inferences with extreme efficiency.

20. DISTRIBUTION /AVAILAIIUTY OF ABSTRACT 121. ABSTRACT SECURITY CLASSIFICATION
O3UNCLASSIFIEDAJNUMITEO r SAME AS RPT. C] OTC USERS Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL
1 22b. TELEPHONE (/ncfude Area Co*) 22c. OFFICE SYMBOL

DD FORM 1473, s4 MAR 63 APR edition mny be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGEAll other edition are obsolete. UNCLASSIFIED

A CONNECTIONIST SYSTEM
FOR RULE BASED REASONING

WITH MULTI-PLACE PREDICATES
AND VARIABLES
Lokendra Shastri

Venkat Aijanagadde

MS-CIS-89-06
LINC LAB 141

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104

January 1989

Running head: A Connectionist System for Rule-Based Reasoning

Acknowledgements: This research was supported in part by DARPA grant N00014-85-
K-0018, N00014-85-K-0807, NSF grants MCS-8219196-CER, iR184-10413-A02, IRI 88-05465,
MCS-83-0521 1 and U.S. Army grants DAA29-84-K-0061, DAA29-84-9-0027.

0 G~ VZ

A Connectionist System for Rule Based Reasoning with Multi-Place
Predicates and Variables

Lokendra Shastri and Venkat Ajjanagadde
Computer and Information Science Department

University of Pennsylvania
Philadelphia, PA 19104

Abstract

McCarthy has observed that the representational power of most connectionist systems is
restricted to unary predicates applied to a fixed object. More recently, Fodor and Pylyshyn have
made- a sweeping claim that connectionist systems cannot incorporate systematicity and
compositionality. These comments suggest that representing structured knowledge in a
connectionist network and using this knowledge in a systematic way is considered difficult if not
impossible. The work reported in this paper demonstrates that a connectionist system can not
only represent structured knowledge and display systematic behavior, but it can also do so with
extreme efficiency. The paper describes a connectionist system that can represent knowledge
expressed as rules and facts involving multi-place predicates (i.e., n-ary relations), and draw
limited, but sound, inferences based on this knowledge. The system is extremely efficient - in
fact, optimal, as it draws conclusions in time proportional to the length of the proof. It is
observed that representing and reasoning with structured knowledge requires a solution to the
variable binding problem. A solution to this problem using a multi-phase clock is proposed. The
solution allows the system to mainzain and propagate an arbitrary number of variable bindings
during the reasoning process. The work also identifies constraints on the structure of inferential
dependencies and the nature of quantification in individual rules that are required for efficient
reasoning. These constraints may eventually help in modelling the remarkable human ability of
performing certain inferences with extreme efficiency. L.ossion For 4

NTIS GRA&I Po
DTIC TAB 0
Unannounced 0 f
Jstitiat ian

BY ---------
Distribution/

Availability Codesf vail and/or
Dist Special

1 Introduction

McCarthy in his commentary on Smolensky's paper. On the Proper Treatment of Connectionism [25] asserts

that connectionist systems suffer from "the unary or even propositional fixation"; representational power of most

connectionist systems is ruc',; ed to unary predicates applied to a fixed object. More recently, Fodor and Pylyshyn

[12] have made sweeping claims that connectionist systems cannot incorporate systematicity and compositionality.

These comments suggest that representing structured knowledge in a connectionist network and using this knowledge

in a systematic way is considered difficult if not impossible. This paper addresses these concerns. It describes a

connectionist system that can represent knowledge expressed in terms of rules and facts involving multi-place

predicates (i.e., n-ary relations) and draw limited but sound inferences based on this knowledge in an extremely

efficient manner. The time taken by the system to draw conclusions is proportional to the length of the proof, and

hence, optimal.

It is observed that the key technical problem that must be solved in order to represent and reason with structured

and rule based knowledge is the variable binding problem [10, 26]. A solution to this problem using a multi-phase

clock is proposed. The solution allows the system to maintain and propagate any number of variable bindings

during the reasoning process.

1.1 A case for a strong notion of computational effectiveness

If we analyze human behavior we find that humans are extremely good at drawing certain kinds of inferences with

remarkable efficiency - often in afew hundred milliseconds. We draw these inferences as if by reflex and without

delberation. These inferences however, are by no means trivial and support a broad range of cognitive activity

such as classifying and recognizing objects, understanding spoken and written language, and making commonsense

inferences. Any artificially intelligent agent must match this remarkable performance in order to interact with

intelligent agents and perform credibly in a complex environment. It therefore follows that any serious attempt at

understanding intelligence must provide a detailed computational account of how such inferences may be drawn

with requisite efficiency.

Researchers in knowledge representation and reasoning have been sensitive to the problem of tractable inference

and have investigated several alternatives for computationally effective limited inference systems [13, 17, 18, 5,

19, 28]. The work described in this paper is also concerned with computational effectiveness but in a much

stronger sense of the term, a sense suggested by the human reasoning capabilities mentioned above. Thus, we

are not concerned here with questions of decidability or exponential, polynomial, or even linear complexity. What

concerns us here is the search for appropriate knowledge structuring techniques and computationalmodelsthat can-

be used to design systems capable of performing a limited class of inference with extreme efficiency - i.e., in time

that is at most sublinear in the size of the knowledge base. An example of such efficiency would be a system that

draws a lais 6f inference in time proportional to the length of the proof.

Unlike most of the work on knowledge representation where it is assumed that the target machine for the eventual

implementation will be a serial von Neumann machine, this work presupposes a massively parallel (connectionist)

architecture. It is ourlJelief that working within a massively parallel computational architecture will help in

identifying novel classes of limited inference that can be performed with extreme efficiency, and aid in discovering

constraints that must be placed on the conceptual structure-in order to support extreme efficiency [24]. Work

described in this paper suggests that this belief is appropriate.

It

1

2 A Connectionist Metaphor for Reasoning

A connectionist system consists of a large number of highly interconnected but relatively simple processing elements.

These elements communicate with their neighbors by propagating a level of activation and compute their own level

of activity based upon the activation arriving from their neighbors.

Adopting a connectionist approach to knowledge representation and reasoning has some important consequences.

We mention two that are relevant to the present discussion.
In a connectionist system there is no distinct interpreter that mediates retrieval and reasoning. The connection

pattern, the weights on links, and the computational characteristics of nodes not only represent domain knowledge
but also encode the retrieval and inferential processes that operate on this knowledge. This stae of affairs forces

a strong coupling between a representation and the inferences that the representation is expected to support. On

the one hand, this makes the problem of representation more challenging, but on the other it directly addresses the

central problem of efficient inference.'.

The fine grain of parallelism supported by connectionism permits one to assign a single processing element to

each unit of information. This has the following interesting consequence: Assume that besides enumerating facts

about the world, we also identify the important inferential connections or dependencies between these facts. Now if

we encode each piece of information as a connectionist node (henceforth node), and dependencies between pieces

of information as explicit links between the appropriate nodes, then we can view inference as parallel spreading of

activation in a connectionist network. The above metaphor has tremendous appeal because it suggests an extremely

efficient way of performing inference. There are however, two critical problems that must be addressed before this

metaphor can serve any purpose. These are the problems of convergence and control.

2.1 Convergence

Parallelism does not guarantee speed. In order to support extremely efficient inference, the spreading activation

process must converge extremely fast. The computation performed by many connectionist systems corresponds to

a relaxation process wherein activation circulates in a network until finally a stable network state is obtained.

Often it is difficult to place an upper bound on the convergence time of such systems and even in cases where it

is possible to do so, it often turns out to be polynomial in the size of the knowledge base. Given our emphasis

on extreme efficiency, we wish to focus on systems that can perform desired inferences in time that is at most

sublinear in the size of the knowledge base. This can be achieved by showing that the system is guaranteed to

converge in a constant number - preferably one - of sweeps of spreading activation across the network. Such a

convergence behavior ensures that thenetwork can compute a solution in time proportional to the diameter of the

network which is - in almost all cases - sublinear (and often logarithmic) in the size of the knowledge base.
For example, in the context of inheritance and recognition in a semantic network, the diameter corresponds to the

depth of (i.e., the number of levels in) the conceptual hierarchy, and is logarithmic in the number of concepts in

the knowledge base.

But, for the connectionist network to compute solutions in a single pass of spreading activation the dependencies

among pieces of knowledge must be acyclic. This condition may be satisfied naturally in some domains that exiibit

restricted forms of cause-effect relationships much like open loop systems. In some other domains it may be possible

to achieve this condition by carrying out a finer decomposition of the terms in the knowledge base so as to reduce
1For a detailed discussion of this issue refer to [221

2

the density of dependencies (where density is the ratio of the number of dependencies to the number of terms in

the knowledge base. A second way of eliminating cyclic dependencies is to identify suitable constraints on the

conceptual structure that rule out certain types of cyclic dependencies.

2.2 Control of spreading activation, or the cross talk problem

By far the biggest snag in the spreading activation metaphor is that it overlooks the problem of control: It is

one thing to build networks that model priming effects, simple associations, and associative recall, and another to

build networks that can dra~w precise and controlled inferences. This problem is specially acute since connectionist

systems operate without the intervention of an interpreter.

To appreciate the problem, consider a connectionist representation of a red square and a blue circle. We

would expect this representation to be such that activating the representation of the red square would activate the
representation of redness and squareness. Similarly, we would expect that activating the representations of blue

circle would activate the representation of blueness and circleness. However, unless the representations and the

rules of spreading activation are chosen carefully, the simultaneous activation of the representations of the red

square and the blue circle will have the undesirable side effect of creating the representation of a red circle and a
blue square! In the connectionist circles tis problem is referred to as the cross-talk problem.

In order to avoid the cross-talk problem one needs a mechanism for binding the color value "red" with the

representation of the red square and the color value "blue" with the representation of the blue circle and keeping

these bindings from interfering with one another. A simple, almost trivial, way of achieving this is to posit the
existence of a "conjunctive" node RED-SQUARE to represent the red square and have it connected to the nodes

RED and SQUARE (which represent redness and squareness respectively). Similarly, one could posit the existence

of a node BLUE-CIRCLE linked to the nodes BLUE and CIRCLE to represent the blue circle. 2

The above scheme is only suitable for representing relatively stable (long term) knowledge. Such conjunctive
nodes can clearly be learned over time in order to represent new - but stable - grouping of constituents. However,

such a scheme is entirely inadequate if such groupings have to be created dynamically for short durations. Note

that having a conjunctive node for all possible combinations of consituents is ruled out because such a solution
requires too many nodes.

The need for establishing dynamic and temporary bindings clearly arises in language understanding, vision, and
reasoning. In fact it arises in any situation that involves reasoning with representations that include the use of

variables. s Consider the following 'example involving a simple reasoning step. Assume that a network encodes

the rule:

Vz, y [HIT(x, y) =* HURT(y)]

and facts such as HIT(John, Mary) and HIT(Tom, John) among others. HURT(John) clearly follows

from the above knowledge by instantiating the rule with the bindings John for y and applying modus ponens. If

the network is to infer HURT(John) it must carry out an equivalent computation. In generic terms, it must

have a way of activating the representation of HURT() given the activation of the representation of HITO.

'An obvious problem with this solution is that it does not distinguish the roles of RED and SQUARE. In particular, the scheme does not
allow RED.SQUAkE to selectively activate RED without activating SQUARE. This is required because we would like the system to be capable
of looking up the representation of the red square and answering the question "What is its color?". There are ways of solving this problem
using relatively, simple control mechanisms [231.

3Sonie researchers have argued that it may be possible to exhibit interesting cognitive behavior without solving the variable binding problem.
For example see [l].

3

Furthermore, it must have a mechanism for establishing bindings for variables x and y in the representation of
HITO and ensuring that the same bindings are induced in the representation of HURTO. The problem gets even

more confounded if we wish to chain such inference steps and the bindings have to be propagated faithfully along

the chain.

Note again that any solution that requires that such bindings be pre-wired is unacceptable: prewiring these

.bindings -would correspond to explicitly representing all possible instantiations of the rule (this would also mean

that the system is.only dealing with propositions not with quantified sentences involving predicates!). This is not

feasible becaise the number of instantiations may be too many - potentially unbounded. Thus we need the ability

to set up these bindings on the fly.

3 Related Work

Before-describing our system it may be appropriate to review some existing massively parallel systems for repre-

sentation and reasoning.

Pearl's work[21] on "belief networks" involves the use of parallelism to perform efficient reasoning. These

nets perform probabilistic reasoning where the fusion and propagation of beliefs proceeds in parallel provided the

"causality" graph is singly connected. The system, however, only deals with propositions and does not allow

variables.

Shastri [23] has described how hierarchically structured knowledge about concepts and their properties may be
encoded as a connectionist network. The proposed connectionist semantic memory solves an interesting class of

inheritance and recognition problems extremely fast - in time proportional to the depth of the conceptual hierarchy.

The connectionist encoding is based on an evidential formalization of conceptual-knowledge that leads to provably

optimal solutions to the problems of exceptions and multiple inheritance during inheritance, and the best match

or partial match computation during recognition. Shastri's system displays the desired-level of efficiency as its

response is at worst logarithmic in the size of the knowledge base. However, it does not address the problem of

variable binding. For the sake of clarity if we suppress the evidential aspect of reasoning in the system, the system

deals with rules of the form

V(z)P(z) *:O QWz

and

V(x)P(x) * Q(x, a)

Although multiple rules participate in a derivation, it is always the case that all variables are bound to the same

individual and thus the system can get by without actually solving the variable binding problem.

The spreading activation metaphor described in Section 2 is not the only connectionist metaphor for reasoning.

A second and quite different metaphor is the energy minimization metaphor [31 where the inference process is

reduced to the problem of finding the lowest energy state(s) of a suitably interconnected network.4 Such a process

'may even require not one but several cycles of convergence and it is difficult to place an upper bound on the

convergence time of such systems. Even in cases where it is possible to do so, it turns out to be at best polynomial

in the size-ofitiiekfiowiedge base [6]. Thus, even though systems based on the energy metaphor are massively

parallel - and are often explicitly motivated by a desire to build a system capable of performing certain inferences

with extreme efficiency - they do not meet the efficiency requirement. Work described in [3, 27, 6, 7] belongs to
4 The search for a minimad negy mate is often caried ot using a weaxation proaus such as simulaed annealing [161.

4

this category. A second problem with such systems is that they are not always guaranteed to find the prescribed

solution because the energy minimization process can get trapped in a local minima. In spite of these limitations

we feel that work in this direction is quite significant in that it investigates an interesting alternative paradigm and

leads to important insights.

Ballard and Hayes [3] were the first to develop a connectionist inference system using the energy minimization

paradigm. They did not address the problem of variable binding as their system required that all possible bindings

be explicitly pre-wired.into the network. As we have argued above, such an assumption is much too strong.

Recently, Derthick[6] has proposed a connectionist system for drawing intuitively plausible inferences with

respect to a frame based representation language that allows a limited use of quantifiers. The main strength of

the system is its formulation of plausible inference that allows it to deal with conflicting information. As is the

case with Ballard and Hayes' system, the main drawback of Derthick's system is that it lacks efficiency. The

time complexity of the system turns out to be polynomial in the number of terms (concepts, roles, fillers) in the

knowledge base. Thus the system takes thousands of steps to solve even modest size problems.

Touretzky & Hinton [27] have described DCPS, a distributed connectionist encoding of a restricted production

system. The operation of a production system requires the ability to perform variable bindings, and DCPS system

exhibits this ability. The restrictions on variable bindings, however, are fairly strong. For example, DCPS only

allows one variable in the antecedent. It also assumes that during any cycle there is only one rule with one variablz

binding that can constitute a potential correct match. Furthermore, it is possible that the system may not find

the correct match. As DCPS is a production system, each step of the reasoning process involves rule selection

(which in tarn requires matching rule patterns with patterns in the working memory and selecting a winner) and

updating of the working memory. Thus each step of the reasoning process involves (several) relaxation cycles,

and therefore, the DCPS system does not satisfy the strong efficiency requirement. Recently, Dolan & Smolensky

[8] have described a variant of the T&H production system using the tensor product representation proposed by

Smolen:-/ in [26]. The proposed system overcomes some of the limitations of the (T&H) system and its behavior

is more amenable to analysis.

Dolan and Dyer[7] have proposed a system for schema selection and instantiation. The system uses a complex

mechanism to bind schema roles (variables) to fillers (value). It appears that the role bindings are sensitive to the

similarity of role fillers. Assume that fillerl is bound to rolel and filler2 has to be bound to role2. If filler2 is

similar to fillerl then it is possible that filler2 may also get bound to .rolel. This is essentially a manifestation of

the cross-talk problem discussed in Section 2.

4' Representation and Reasoning

The proposed connectionist system can perform a broad class of deductive inference involving variables and multi-

place predicates with extreme efficiency. Specifically, the systen' can represent knowledge expressed in the form

of rules and facts and determine whether a query can be derived as a consequence of the facts and rules encoded

in the system. The answers to queries are produced in optimal time: the time taken to draw an inference is only

proportional to the length of the pr6of.

The form of iules, facts, and queries is explained below.

Rules in the system are assumed to be sentences of the form

Vxj, ..., xm [PA(.. ... A ^ Vyl, ..., y ...z Q(...

where arguments for Pi's we subsets Of {z 1 , Z2, ... zw}, while the arguments of Q.may consist of any number of

arguments from among the zi's and any number of constants besides the universally and existentially quantified

arguments introduced in the consequent. Notice that the more commonly occurring rules of the form

Vxl 1,z [P (...) AP2(-...--A P. *: Q(...)

- where every variable occurring in a rule is universally quantified with the scope of quantification being the entire

implication -' ar just a special case of the move general formr specified above.

Facts are assumed to be atomic formulas of the form P(tl, t2...tk) where ti's are either Constants or existentially.

quantified variables.

A query has the same form as a fact: it is an atomic formula whose arguments are, either bound to constants or
are existentially quantified. Some examples of rules, facts, and queries follow:

Rules:

VX, Y, z give(z, y, z) ::€ owns(y, z)

Vx, y owns(z, y) =: can-sell(z, y)
Vz omnipresent(z) =* Vy, t present(z, Y, t)

Vz, y born(z, y) = 3t present(z, y, t)

Vz triangle(z) * number-of-sides(z, 3)

V, y sibling(z, y) A born-at-the-same-time(z, y) * twins(z, y)

Facts:

give(John, Mary, Book1); John gave Mary Bookl.

give(z, Susan, Ball2); Someone gave Susan BaUl2.

omnipresent(x); There exists someone who is omnipresent.

triangle(A3); A3 is a triangle.

sibling(Susan, Mary); Susan and Mary are siblings.

born-at-the-same-time(Susan, Mary); Susan and Mary were born at the same time.

Queries:

1. owns(Mary, Bookl); Does Mary own Book!?

2. owns(z, y); Does someone own, something?"

3. can-sell(z, Ball2); Can someone sell Ball2?

4. present(x, Northpole, 1/1/89); Is someone present at the north pole on 1/1/89?

5. number-of-sides(A3, 4); Does A3 have 4 sides?

6. can-sell(Mary, BaUl2); Can Mary sell Ball2?

7. twins(Susan, Mary); Are Susan and.Mary twins.?

All queries except 5 and 6 follow from the rules and facts and the system responds 'yes' to these queries. The

system says 'no' to queries 5 and 6.

4.1 Directed reasoning

The strong- eefcicncy requirement we have iihiosed on our system entails that it find a solution in a fixed number

of passes of spreading activation. As discussed in Section 1.2, this requires that the inferential dependencies in the

knowledge base be acyclic. The nature of such inferential dependencies can be made explicit by expressing the

6

rule component of the knowledge base in the following graphical manner. Depict each predicate occurring in the
rules by a unique node in the graph. Then if there is a rule of the form

P,.- A P2(..-. A P.Q(...)

in the knowledge base, draw directed arcs from the nodes corresponding to Pis to the node corresponding to Q.
The requirement that the inferential dependencies of the knowledge base be acyclic amounts to requiring that the
directed graph obtained in this manner be acyclic. We will therefore focus on knowledge bases whose inferential
dependency graph corresponds to a directed acyclic graph and henceforth, we will often refer to the rule component
of the knowledge base as the PDAG (for Predicate DAG). Fig. I illustrates a PDAG corresponding to a small
collection of rules.

In view of the directed nature of inferential dependencies, we refer to the system's inferential ability as directed

reasoning. Directed reasoning appears to be adequate to captur, a broad range of common sense reasoningsituations.
In particular, it can deal with restricted types of causal reasoning, i.e., reasoning about actions and events wherein
there is no circular causality (i.e., systems that can be modeled as open loop systems). Terminological reasoning,
that is, reasoning with definitional knowledge of concepts (terms) is also a case of directed reasoning.

5 The Connectionist Encoding

In this section we describe a connectionist system that can determine whether a query (i.e., an existentially quantified
atomic formula) logically follows from a set of rules and facts. The soundness and completeness properties of this

system are as stated in Section 8.
The proposed connectionist system only takes a single pass of spreading activation to answer queries, and while

doing so the system maintains and propagates any number of variable bindings across arbitrarily long chains of

inference.

5.1 An Overview

Before describing the encoding in full detail, we provide a brief sketch of how rules and facts are encoded and how
queries are posed and processed by the network. Many details have been suppressed, subsequent sections provide

a complete description.

In accordance with the connectionist metaphor for reasoning described in Section 2, we encode each "unit"
of information by a distinct node and represent the inferential dependencies between these units by links between,.
appropriate nodes. Fig. 2 depicts a network that encodes the following rules and facts:

Rules:

" Vx, y, z [orderhit(z, y, z) :' hit(y, z)]

" Vx, y [hit(x, y) =}" hurt(y)]

" Vx, y [felldown(x) = hurt(x)]

Facts:

* felldown(bob)

7

" .hit(dave, dick)

" hit(mike, dave)

" orderhit(bob, mike, dave)

where the predicates may be interpreted as follows:

" orderhit(x, y, z) - denoting that x ordered y to hit z.

" hit(z, y) - denoting that x hit y.

" felldown(m) - denoting that z fell down.

Each constant in the domain is represented by a const node (an oval shaped node). An n-ary predicate is

represented by a pred node drawn as a rectangular box) and a cluster of n arg nodes (depicted as diamonds). Thus
the ternary predicate orderhit is represented by the pred node labeled ORDERHIT and the three arg nodes -
al, a2, and a3 - drawn next to it. As defined in Section 4, a fact is an instance of a predicate, some of whose
arguments are bound to constants. 5 Each fact is represented by an instancer node (drawn as a hexagon) with

two banks of inputs: one from the nodes representing the arguments of the corresponding predicate and the other
from the nodes representing the constants that are bound to the arguments. The instancer node sends an output
to the pred node. Thus the fact orderhit(dave, mike, bob) is represented by the instancer node Al connected to
the pred node ORDERHIT, the arg nodes al, a2, and a3 of ORDERHIT and the const nodes dave, mike,

and bob as shown in Fig. 2.
A rule is encoded by interconnecting the nodes representing the antecedent predicate and the nodes representing

the consequent predicate. Thus the rule

Vx, y, z orderhit(z, y, z) =* hit(y, z)
is represented by connecting the nodes ORDERHIT and HIT and the nodes representing the first and the

second arguments of HIT (a4 and a5) to the nodes representing the second and third arguments of ORDERHIT

(a2 and a3) respectively.
Having described the basic representation, let us see how a query is posed to the network and the answer

computed. Posing a query to the network involves specifying the query redicate and the bindings of the arguments
in the query. To maintain and propagate the variable bindings, the system uses a phased clock, that is, a clock
whose cycles are subdivided into several subcycles called phases.6 The number of phases in a clock cycle equals
the number of distinct bound arguments in the query, and can be ascertained when the query is posed. In particular,

the number of phases does not depend on the length of the proof or the arity of the various predicates involved in
the proof. While pred and instancer nodes remain active over entire clock cycles, arg and const nodes remain
active only during those phases of a clock cycle in which they receive input activation.

The query predicate is indicated to the network by activating the corresponding pred node in the first clock
cycle. Predicate nodes are insensitive to phases and therefore, the node corresponding to the query predicate may
be activated during any phase of the first cycle. Each binding specified in the query is indicated to the network by
activ'ating simultaneously - ie., in the same phase - the arg node and the const node corresponding to the binding.
This process is repeated for each distinct binding - a different phase being used each time, During computation,

51n genea, all gumenm need not be bound.
1The use of he tempoln dimension to disambiguate activity in comectionist netwoks has been suggested in the past [29, 9].

8

the simultaneous activation of an arg node and a const node in a phase implies that the corresponding argument

and constants are bound.

A query such as hurt(dave) would require a clock with a single phase and would be posed to the network

by activating the node HURT (the node corresponding to the query predicate) in the first clock cycle, and the

const node DAVE together with a6 - the appropriate arg node of HURT, in the first phase of the first clock

cycle. This would result in the activation of the nodes as shown in Fig. 3. The pair of numbers next to the nodes

indicate the clock cycle and the phase in which a node first.becomes active. In brief, a5, the second argument of

HIT, and a7, the first argument of FELLDOWN become active in the first phase of the second clock cycle and

thereafter remain active in the first phase of each subsequent clock cycle. As a result of coincident inputs from a5

and DAVE during the first phase of each clock cycle, the instancer node A2 would become active in the third

clock cycle. Once activated, A2 would activate HIT in the fourth clock cycle which in turn would provide input

to the query predicate HURT, indicating that the query is true. In general, the query predicate receiving input

activation - other than the external activation that was provided when the query was posed - indicates that the query

is true.
Beginning with the second clock cycle, the instancer nodes A3 and A4 would receive activation from one of

their arg nodes (a5 and a7, respectively) during the first phase of each clock cycle. However, as the associated

const nodes (DICK and BOB, respectively) remain inactive during the phase the arg nodes are active, the

instancer wndes will not be activated.

The instancer nodes play a key role in the reasoning process and the activation of an instancer node indicates

that the bindings of arguments in the fact encoded by the instancer subsume the bindings specified in the query.

The reasoning process amounts to a paralll backward chaining process. First the knowledge base is searched

in parallel to locate all facts that satisfy the binding requirements imposed by the query and whose associated

predicates have inferential connections to the query predicate. Next a' parallel forward pass is made to determine

whether the query follows from these selected facts. The flow of activation in the forward pass corresponds to the

simultaneous progress of all possible proofs of the query formula. The whole computation is performed without

any external intervention and in optimal time - equal to twice the length of the proof.

5.2 Encoding constants, predicates, rules and facts

In this section we describe in detail the encoding of facts and rules. It turns out that the whole encoding can

be described using nodes that behave like simple binary threshold units (BTU's) with phase sensitive behavior

(p - BTU's). An example of such a node is the arg node (see below) that becomes active in phase i of a clock

cycle if it receives any input in phase i of the preceding clock cycle. Thus, we can view this node as a BTU -
with threshold and input weights of 1 - whose sampling time window is a phase rather than a clock cycle. Another

example of a phase sensitive variant of a BTU is thc 7-or node (depicted as a triangle). A --or node remains

active for a full clock cycle if it receives any input during one or more phase of the preceding clock cycle. A r-or

node can also be viewed as a BTU whose threshold as well as all inputs weights equal 1, except that its input time

window is a phase while its output time window is a full clock cycle.

Even though the full system can be described using p - BTUs, in this section we will make use of two abstract

node types, viz. pred and instancer. We do so for clarity of exposition; the use of these abstract node types

makes it easier to understand the encoding and its relation to the reasoning process. Later, in Section 7, we show

how these nodes may be realized using p - BTUs. In describing the encoding we will also make extensive use of

9

inhibitory modifier links [11, 15] which have a simplc computational interpretation. The activity along a link from
a node a -after it is modified by an inhibitory modifier from a node b -can beinterpreted as the signal aA - b
(See Fig. 4).

A constant is encoded using a const node which is a simple phase sensitive BTU that becomes active in phase
i of every clock cycle if it is initially activated in ith phase.

An n-ary predicate is represented by a pred node and an associated cluster of n arg nodes. Fig. 5 depicts
the representation of a binary predicate P1. In all figures, pred and arg nodes will be depicted as rectangles and
diamonds respectively. A pred node has three sites: IMP, INST, and BC. The role of the different sites of a pred
node will be made explicit as we go along. As stated earlier, arg nodes become active in a phase i of a clock cycle
if they receive one or more inputs in phase i of the previous clock cycle.

A rule is encoded by interconnecting the nodes representing the appropriate predicates. Fig. 6 depicts the
representation of the rule

V, y, zPl(X, Y, z) =: Q1(y, X) ... R1
where P1 is a binary predicate and Q1 is a ternary predicate. The inferential connection between the predicates

P1 and Q1 is encoded by a link from the pred node P1 to the site IMP of the pred node QI (IMP is an abbreviation
of "implied"), and a link from Q1 to P1 incident at site BC (BC is an abbreviation for backward chaining). An
input at the site IMP of a pred node means that the predicate is implied by the predicate from which it is receiving
activation, while an input at site BC means that the predicate is of potential significance in establishing the truth of
the predicate from which it is receiving activation.

The correspondence between arguments of antecedent and consequent predicates is established by links from
arg nodes of the consequent predicate to the appropriate arg nodes of the antecedent predicate.

Fig. 7 provides additional details about how rules are encoded by illustrating the encoding of the rule:
Vzl, z2 [P2(zl, z2) * Vy3z Q2(zl, z2, y, z, a)] R2
where P2 is a binary predicate and Q2 is a 5-ary predicate. The links between the first two arguments of P2

and Q2 reflect the argument mapping between the antecedent and the consequent. The triangular node labeled gl
is an r-or node and it projects inhibitory modifiers that can block the spread of activation along links representing
the inferential connections between the consequent and the antecedent of the rule R2. The significance of these
inhibitory modifiers is as follows. If a variable that is existentially quantified in the consequent of a rule is bound
to anything in the reasoning process then, It follows that this rule cannot be used to prove the consequent. This
is reflected in the link from a4 to gi. If there is a constant in the consequent of a rule then, during the reasoning
process the corresponding argument must not be bound to anything other than this constant. If this is not the case,
the rule cannot be used to prove the consequent. This constraint is encoded by the link froma5 to gl which
is modified by an inhibitory modifier from the const node a. In mo- cases, the argument corresponding to the
universal quantifier in the consequent has no direct bearing on the activation of the rule, and hence, need not be
connected to anything. There is, however, one exception: if the same variable occurs in multiple argument positions
in the consequent of a rule then we need to ensure that this variable is either unbound or bound to the same constant.
This constraint is encoded by introducing a node that receives inputs from the arg nodes corresponding to such a
variable. The encoding is illustrated in Fig. 8. The required node is shown as a pentagon and this node becomes
active if it receives activation in more than one phase of a clock cycle.

As mentioned earlier, a pred node is an abstraction and can be realized using two simple BTU's. This realization
is described in Section 7. The computational behavior of the abstract pred node is described in Fig. 9. A pred
node has three states: Inert, Enabled, and Active; and three output levels: no output, low, and high corresponding

10

to each of the three states. A pred node changes staic in the following manner A low or high input at site BC
causes a state change from Inert to Enabled. A low or high input at site INST or a high input at site IMP causes a

state change from ENABLE to Active.
A fact is encoded using an instancer node. If a fact concerns a predicate of n arguments then the corresponding

instancer node has n + 1 sites: one ENABLE site and n BIND sites - one for each of the n arguments. At the
ENABLE site an instancer ieceives an input from its associated pred node. At each BIND site an instance node
receives an input from the appropriate arg node and if this argument is bound in the fact, then it also receives
another input from the appropriatr const node. The output of the instancer node goes to the site INST of the
corresponding pred node. Fig. 10 depicts the encoding of the fact P3(a, b, b, z), where P3 is a 4-place predicate
with its fourth argument unbound.

An instancer node becomes active only if the bindings specified in the fact subsume the bindings specified
in the query. This is achieved by ensuring that the instancer node becomes active if and only if in every phase,

any BIND site receiving activation from its associated arg node also receives activation from its associated const
node. Recall that each binding is specified by the simultaneous activation of the relevant arg and const nodes in
the same phase of a clock cycle.

6 Inference Process

This section describes the inference process in more detail. For pedagogical reasons, we will begin by assuming
that the system only consists of single antecedent rules. Subsequently, we will indicate how the system can be
extended to deal with multiple antecedent rules.

The inference process may be thought of as consisting of three stages. 7 In the first stage, the query is posed to
the network by external activation of some nodes. During the second stage, a controlled parallel search is carried
out to locate all facts that are relevant to the proof of the query and the instancer nodes encoding such relevant
facts become active. In the third and final stage the actual proof is constructed. In this stage, activation from the
instancers denoting relevant facts flows downwards along the inference paths in the PDAG to produce an answer
to the query. The answer corresponds to activation arriving at the pred node that corresponds to the query predicate
along one or more of its ancestor pred nodes.

6.1 Posing the query and specifying role bindings

Posing the query involves specifying the query predicate avd the constant argument bindings to the network. The
query predicate is indicated to the network by activating the pred node that corresponds to the query predicate
during the first clock cycle8. Bindings of arguments are indicated by using a phased clock. For a given query, each
clock cycle of the network consists of a fixed number of phases. If the argument bindings in the query involve
p distinct constants, then the clock has p distinct phases.9 Let cl, ..., c be p distinct constants appearing in the
bindings specified in the query. Then each clock cycle will have p phases. The query will be posed in the following
manner

7These stages are conceptually distinct, however, during actual processing these stages overlap.
8Predicate nodes are not phase sensitive, and they may be activated in any phase.
'In general p can be less than the number of bound arguments in the query because the same constant(s) may be bound to more than one

argtwnenL

11

In the ith phase of the first clock cycle, (1 < i < p), the following nodes will be activated:

" The const node corresponding to c.

" The arg nodes corresponding to the ih,..., Oh arguments of the query predicate, where i1 ,...,ij are one or

more arguments of the query predicate bound to c.

As stated earlier in Section 5.2, arg nodes and const nodes are phase sensitive and the phases in which they

remain active are determined by the clock phases in which they first become active. The simultaneous activation

of an arg node and a const node during a phase represents that the constant denoted by the latter node is bound

to the argument denoted by the former node.

6.2 Searching for assertions

Once the query is posed, the second stage of reasoning ensues. During this stage, all assertions that are relevant to

the proof of the query are identified. Relevant assertions can be of two types:
There may exist a fact associated with the query predicate itself whose argument bindings subsume the bindings

specified in the query. The query would follow directly from such a fact. For example, the query hit(dave, dick)

(i.e., "Did Dave hit Dick?") trivially follows from the fact hit(dave, dick) (refer to Fig. 2.). 10

The second possibility is that there exist fact(s) associated with ancestor predicate(s) of the query predicate and

whose argument bindings subsume those specified in the query. In this case, the query would follow via a chain of

modus ponens.
We consider, in turn, how the two types of relevant facts become active during the query process. Consider

how the instancer node A2 (representing the fact hit(dave,dick)) becomes active in response to the query

hit(dave, dick). Once this query is posed, the pred node hit remains active in every clock cycle, the const node

dave and the first arg node of hit remains active during the first phase of every clock cycle. Similarly, the const
node dick and the second arg node of hit remains active during the second phase of every clock cycle. The

activation from these arg and const nodes reaches the intancer node A2 during the specified phases. A2 also

starts receiving activation from hit beginning with the second clock cycle. An instancer node functions as follows:

An instancer node becomes active at the end of clock cycle t and remains active throughout cycle t + 1 if and

only if during the clock cycle t I

" It receives activation from its associated pred node, and

" During each phase of clock cycle t, if it receives activation from an arg node, it also- receives activation-

from the const node bound to this arg node.

It follows that as a result of the query hit(dave,dick), the instancer A2 will become active at the end of the
second clock cycle and remain active thereafter.

To see how relevant instancer nodes associated with ancestors of the query predicate become active we shall

consider an example. Consider the query hit(mike, bob) (refer to Fig. 2). There is no fact associated with hit that
subsumes the bindings in this query. As a result of the query, the first arg node of hit and the const node mike

will become active in the first phase of every clock cycle. Similarly, the second arg node of hit and the const

Ole fact hit(dave, dick) also subsunes other queries such as 3xhit(x, dick), 3xhit(dave, x), etc., all of which also follow, directly,

from this fact

12

node bob will become active during the second phase of every clock cycle. Beginning with the second cycle and

thereafter, the second arg node of orderhit will receive activation from the first arg node of hit during the first

phase of each clock cycle, and the third arg node of orderhit will receive activation from the second arg nodes

of hit during the second phase of each clock cycle.

As the phase in which an arg node becomes active depends on the phase in which they receive activation, the

second and third arg nodes of orderhit become active in the first and second phases respectively of every clock

cycle. Summarizing, the active const and arg nodes in the first phase of every clock cycle are: mike, the first arg

node of hit, and the second arg node of orderhit; and those active in the second phase are: bob, the second arg

node of hit, and the third arg node of orderhit.

Essentially, we have created two new bindings: mike has been bound to the second argument of orderhit and

bob has been bound to the third argument of orderhit. At the same time the pred node orderhit will become

active beginning with the second clock cycle as a result of receiving activation from hit. 11 The instancer Al

that encodes the fact orderhit(dave, mike, bob) will now become active as a result of the activation it receives

from orderhit, the second and third arg nodes of orderhit and the corresponding const nodes mike and bob.

What remains to be mentioned - as far as the search for facts relevant to the proof is concerned - is the role of

the inhibitory connections to the links connecting the nodes that represent the antecedent and consequent predicates

of rules (Fig. 7). As explained in Section 5.2, these inhibitory connections ensure that an implication between two

predicates is used in a proof, only when some conditions implicit in the rule are met. The i--or node, gl, at which

these inhibitory links originate (refer to Fig. 7), checks whether the required conditions are met. If any condition

is not met, the node gl sends activation via inhibitory modifier links to block the flow of activation from the nodes

that represent the consequent predicate to those that represent the antecedent predicate. Specifically, the inhibitory

mechanism checks for three types of conditions.

The first of those conditions concerns the occurrence of constants in the consequent of a rule. Consider the rule

Vz [P(x) : Q(x, a)]

where 'a' is a constant. This rule can be used in the proof of Q(c, a) or 3yQ(c, y), but not of Q(c, b). That is, if

the second argument of Q is bound to a constant other than the one that appears in the rule, namely 'a', this rule

cannot be used in a proof.
The second condition these inhibitory mechanisms check for concerns the existentially quantified variables that

occur in the consequents of rules. Basically, it involves checking that these existentially quantified variables are

not bound whenever the rule is made use of. As an example, given the rule

Wx [P(x) *3y Q(--, y)]

and the fact P(a), one can prove By Q(a, y), however, one cannot prove Q(a, b).

The third type of condition checkd by the inhibitory connections corresponds to the case where a variable
occurs more than once in the consequent of a rule. This condition was not shown in Fig. 7. As an example,

consider the rule
Vz [P(X) * Vy Q(Z X, y, a)]

This rule should not be used if the first and the second arguments of Q are bound in a query to different constants.

they should be bound to the same constant. How this is achieved is illustrated in Fig. 8.

"1The presene d these indings together with the activation of the arg nodes of orderhit and orderhit can be thought of as encoding the

que y orderhit(x, mike, bob) (i.e., "Did someone order Mike to hit Bob?")!

13

6.3 Producing the answer

At the end of the second-stage, all the instancer nodes representing facts that are relevant to the proof of the query
will become active. Once activated, each instancer will send activation to its associated pred node. Consequently,
the pred nodes will switch to the Active state and transmit a high output (refer to Fig. 9, Section 5.2). This high
output would impinge upon the IMP sites of all their child pred nodes which will in turn switch to an Active state
and generate a high output. Eventually, activations originating at the active instancer nodes will flow downwards
through the hierarchy of pred nodes to reach the query pred node which will then switch to an Active state -
thereby producing an answer.

6.4 Reasoning with conjunctive antecedents

Previous subsections described the reasoning in the network when all the rules encoded in the network were single
antecedent rules. Consequently, all the proofs were linear chains (note that though each proof is a linear chain,
the search for a proof involves exploring all the biranches of a potentially huge graph in parallel). When we allow
rules of the form Pi(...)AP2(...) A ...Pm(...) = Q(...), the proof itself takes the form of a directed graph. Rules
with conjunctive predicates in the antecedent are encoded using conjunctive nodes. The output of the pred nodes
A', ... , Pm are not connected directly to the pred node Q, instead they are connected a conjunctive node, which
is in turn linked to the IMP site of the pred node Q. The output of the conjunctive node is high if and only if it
receives activation through all the incoming links. The interconnections between the arg nodes of the antecedent
predicates and the consequent predicate remain unchanged.

7 Realization of Pred and Instancer nodes

For ease of presentation we had introduced two abstract types of nodes, namely, pred nodes and insiancer nodes
to represent predicates and facts respectively. Like other node types used in the system, these abstract nodes are
also built out of simple and neurally plausible units. This section describes the anatomy of these abstract nodes.

7.1 Encoding of Pred nodes using simple units

A pred node "subnetwok" consists of two units interconnected as shown in Fig. 11. We will refer to the triangle
shaped node as enabler and the circular shaped node as collector. The links incident at the vertical edge of the
enabler come from the child predicates of the predicate represented by enabler (these links are the ones shown
as incident at the site BC of the pred node in the abstract description given earlier). The enabler unit is a simple
BTU whose output becomes high if and only if it receives activation, along one or more inputs (i.e., it computes
an 'or' and can be realized as a BTU with weights and threshold of 1). An enabler node sends output to

* its associated collector node

" the enabler nodes of all the parent predicates

" the instancers associated with the predicate represented by the enabler node

The collector node receives two sets of inputs; one set of inputs comes from the associated instancer nodes and
another set of inputs comes from the collectors of all the parent predicates. (tese two sets of inputs correspond

14

respectively to those incident at the INST and IMP sites of the abstract pred node). The output of the collector

node becomes high if and only if it receives activation from any of the parent predicates or any of the associated

instancers (i.e., it is also an 'or' function over all its inputs). The collector node is also connected to the collector

nodes of all the child predicates.

7.2 Encoding of Instancer nodes using simple units

Fig. 12 shows the details of an instancer subnetwork corresponding to an n-place predicate. 'P' is the input from

the associated predicate node (i.e., from the enabler node representing the predicate). This input is modified by

inputs from arg nodes. If an argument is bound to a constant in the fact represented by the instancer, the input

from the corresponding arg node is in turn modified by an input from the appropriate const node. The r-and node

changes state only at the ends of clock cycles. It becomes active at the end of a clock cycle and remains active

throughout the next clock cycle if and only if it receives activation during all the phases of that clock cycle.

7.3 Total node requirement

The total number of units required by the system is only linear in the number of predicates, rules, and facts. Each
constant requires one const node. Each n-ary predicate requires two p - BTU nodes and n arg nodes. Each
fact requires one r-and node. Each rule requires a node for every universally quantified variable introduced in the
consequent that appears in more than one argument position in the consequent. Each rule also requires a ir-or node
if there are any existentially quantified variables or constants in the antecedent. A rule with conjunctive antecedents
also requires a conjunctive node. Thus the total node requirement is only linear in the size of the knowledge-base.

8 Soundness and completeness of reasoning

In this section we specify the soundness and completeness properties of the connctionist inference system system
described in the preceding sections.

8.1 Single antecedent rules

We first focus on single antecedent rules, i.e., rules having the following general form:

[,,, I(...) =* Vy , I..., yk3z, ,...zl Q(...)]

Single antecedent rules form an interesting subclass of rules. SA rules suffice to model a broad range of
knowledge about actions and their effects. Notice that any rule of the form Vzx,..., XM [P(...) * Q1 (...)A... Qn(...)]
can be decomposed into n rules of the form Vxl, ..., zm[P(...) =* Qj(...)]. Thus even if an action P has multiple
effects it may be possible to encode P using several single antecedent rules.

Another important sort of knowledge that can be modeled using single antecedent rules is terminological knowl-
edge wherein complex terms (concepts) are described in terms of general terms until all terms get described with
reference to a set of ground terms. 12 It is widely recognized that terminological knowledge is an important com-
ponent of knowledge about any domain and leads to significant efficiencies in the reasoning behavior of knowledge

'2 As ling as we avoid circular descriptions, tenninological knowledge also saisfies the requirement that inferential dependencies induced by

descrptons (mica) be acyc.

15

representation systems [4]. Some of examples given in Section 4 can be viewed as examples of term descriptions.

For example, the rule

Vz omnipresent(x) = Vy, t present(z, y,t)

can be viewed as a description of omnipresent, while the rule

Vz triangle(z) =: polygon(x) A number-of-sides(z, 3)

which when decomposed into two single antecedent rules

Vz triangle(x) . polygon(x)

Vz triangle(x) = number-of-sides(z, 3)
can be viewed as the description of a triangle. It may be noted that permitting constants in the consequent allows

us to express certain kinds of role value restrictions that are used in frame representation languages. It has been

shown that the knowledge encoded in many semantic networks, frame based languages, or class/property systems

can be expressed in terms of the following sorts of sentences both of which are special cases of single antecedent

rules. 13

VX P(z) Q(z)
Vz P(z) Q(x, a)

It follows that the proposed system - even when restricted to single antecedent rules - can encode basic semantic

network or frame-based representation languages. These and other issues pertaining to terminological reasoning are

presented in detail in [2].

It can be shown that the proposed connectionist system is sound as long as the rules in the knowledge base

obey the following condition:

Constraint-): The same variable should not occur in more than one argument position in the antecedent of a

rule.

If the above condition is satisfied the system will answer yes to a query only if the query is a consequence of

the rules and facts encoded in the system. 14

The condition stated above is in fact too strong, i.e., it is a sufficient condition and not a necessary one. We
choose to state it as above because the specification involves only the form of the rules and does not refer to

the nature of individual queries. It can be shown that our system - even though it may include rules that violate

Constraint-1 - will respond soundly to a query provided.

any variable occurring in multiple argument positions in the antecedent of a rule that participates in the

proof, gets bound as a result of the bindings specified in the query.

For example, the system's behavior will be sound even though it may include the following set of rules (notice

that the first rule violates Constraint-1.)

Vz, y P(z, z,y) * R(z, V)

vx, y R(--)= z , z)

13The IS-A hierarchy can be encoded using the first kind of rules - for example, DOG IS-A ANIMAL can be expressed as Yx dog(x) *

animal(x), and property value anacmients may be encoded using the second kind of rules - for example, apples are red in color can be

expressed as has.olor(APPLE,RrD).
14The consequent of a rule does not have to satisfy any such requirement.

16

provided the bindings specified in the query result in the first argument of R getting bound. Thus, queries such as

R(a, b) and R(a, y) - where y is existentially quantified - as well as queries such as Q(a, b) and Q(y, a), will result

in sound behavior but a query such as R(z, b), R(z, y), and Q(a, y) may not. 15

Like any limited inference system the proposed connectionist system is sound but incomplete. Below we identify

the condition under which the system is complete, i.e., if this condition is satisfied, the system will always respond
'yes' to a query that follows from the facts and the rules encoded in the system. In order to describe this condition,

we need to introduce some definitions.

Relevance: A predicate R is relevant to a query Q(...) if

1. R is an ancestor of Q (w.r.t. to the PDAG)

2. a fact R(...) is asserted in the system, and the bindings of R(...) are such that it subsumes the query Q(...)

3. there is no predicate P between R and Q such that there is a fact P(...) that subsumes the query.

Inference path: A path in the PDAG between two predicates.

Argument Mapping: An inference path between predicates P and Q induces a (symmetric) mapping between

arguments of P and Q. This mapping is referred to as the argument mapping between P and Q.
Composite Argument Mapping: A composite argument mapping between P and Q is given by the union of the

argument mappings between P and Q - the union being taken over all inference paths between P and Q.
Constraint-2: A condition for completeness

If the query logically follows from the rules and facts then the system will always answer yes provided there

exists a relevant predicate R that satisfies either of the following conditions:

1. There is a unique inference path from the relevant predicate R to the query predicate Q.

2. The composite argument mapping between arguments of R and Q is such that any argument of R maps to at

most one bound argument of Q and any bound argument of Q maps to at most one argument of R.

Notice that the existence of only one appropriate relevant predicate suffices. For example, given the following

rules and facts:

Vz, y born(z, y) * 3t present(x, y, t)
Y*, y, z move(x, y, z) =. 3t present(z, z, t)

Vz, y, z move(z, y, z) =. 3t present(x, y, t)

born(john, nyc)

moved(john, nyc, boston)

moved(tom, nyc, boston)
the query present(john, nyc, z) will succeed via the relevant predicate born - even though the composite

mapping between the other relevant predicate move and the query predicate present is such that two arguments of

move (second and third) map to the same argument (second) of present.

Also notice that only arguments bound in the query need to satisfy the condition stated in Constraint-2 above.
Thus a query such as present(tom, z, y) will succeed via the relevant predicate move because the argument that

violates the condition (the second argument of present) is not bound in this query.

15 RecalI that variables in a query am assumed to be existentially quantified.

17

8.2 Conjunctive antecedent rules

The condition for soundness if we allow rules with conjunctive antecedents (i.e., rules of the form Pi (...) A P2 (...) A

...Pmn(...) =: Q(...)) is a simple generalization of the constraint Constraint-I proposed for the single antecedent
case: For the system to draw sound inferences, the same variable should not occur more than once in the antecedent
of a- given rule (this covers all conjuncts of the antecedent).

As before, the above is a sufficient condition and the system will behave soundly with respect to a query if any
variable occurring more than once in the antecedent of a rule that participates in the proof, gets bound as a result
of the bindings specified in the query.

Similarly, the condition for completeness in the multiple antecedent case is a generalization of the single
antecedeat case. In order to make this generalization explicit, consider the "proofs" of a query in the single
antecedent case and the multiple antecedent case. In the single antecedent case, a proof corresponds to a path in
the PDAG from the relevant predicate to the query predicate. In the multiple antecedent case, however, a proof.
corresponds to a directed graph whose root node is the query predicate and whose tip nodes correspond to relevant
predicates. Call this graph a soludon graph. 16 The completeness condition in the multiple antecedent case is as
follows:

The system will always answer 'yes' to a query that logically follows from the rules and facts if there
exists at least one proof such that every relevant predicate (tip node) in the corresponding solution
graph satisfies Constraint-2 - the requirement for completeness stated in Section 4.3.

9 Conclusion

This report describes a connectionist system for performing a restricted class of deductive reasoning using multi.
place predicates and variables in an extremely efficient manner. The time taken by the system is proportional to
the length of the proof, and hence, optimal.

The proposed system is very powerful yet very limited. So although it can draw certain kinds of inferences
in optimal time while maintaining and propagating variable bindings, it also places constraints on the structure of
inferential dependencies and the nature of quantification in the rules. These mixed attributes have to be interpreted
in the correct context. It is important to recognize that we did not set out to building an efficient PROLOG engine
or an efficient generalpurpose production system. Instead, we wished to arrive at a detailed computational account
of how certain restricted but nevertheless complex inferences can be performed almost effortlessly, almost as if
they were a reflex response.

What emerges quite clearly is that in order to support extreme efficiency, inferential dependencies between pieces
of knowledge must be represented explicitly and vividly. Thus every rule and fact in the system occupies a precise
place in the knowledge structure. Adding a rule is not difficult as the rules for inserting a rule are precisely known
and can be automated. However, learning a new rule appears to be more involved. But it must be remembered that
in our context 'learning a rule' means making the rule an integral part of the agent's conceptual knowledge so that
this rule can henceforth be used by the agent almost as a matter of reflex without conscious thought. Clearly, none
would argue that learning new rules - in this sense - is easy for humans.

161nI the multiple antecedent case, the PDAG can be viewed as an AND)R graph [20): Each set of rules having the same consequent predicate

intiodues an OR node, and every jule with multiple antecedents introduces an AND node. 7Ue solution aph mentioned above can be thought
of a a so"in graph of the AND/OR aph coasponding to the PDAG.

18

In the near future we will report an augmented that can answer wh-questions in addition to 'yes/no' questions

(i.e., the augmented system is capable of determining the fillers of unbound arguments in the query). We will also
show that there exists a direct way of integrating a connectionist semantic network (i.e., an inheritance network)

such as the one described in [241 and the rule-based system described here. Such a 'hybrid' system will have more
expressive and inferential-power but will retain its extreme efficiency.

The use of time to represent variable bindings has wide applications - some of these are being investigated [2].
We are also looking at probabilistic generalizations of the system described here wherein rules can be viewed as

preference rules.

10 Acknowledgements

We wish to thank the Knowledge Representation group at the International Computer Science Institute,. Berkeley,
in particular, Jerry Feldman and Mark Fanty for their helpful comments and suggestions.

References

[1] Agre PE. and Chapman, D. Indexicality and the Binding Problem. Presented at the Symposium

"How Can Slow Components Think So Fast". Stanford University, Palo Alto, CA. 1988.

[2] Ajjanagadde V. Forthcoming Ph.D. dissertation, University of Pennsylvania.

[3] Ballard, D.H., and Hayes, PJ., Parallel logical inference, Proceedings of the Sixth Annual Confer-

ence of the Cognitive Science Society, pp. 114-123., BoulderColorado, June.1984.

[4] Brachman, R., Fikes R., and Levesque, HJ. KRYPTON: A Functional Approach to Knowledge
Representation. Readings in Knowledge Representation, R. Brachman, and H.J. Levesque (eds.)

Morgan Kaufman, Los Altos, CA. 1985.

[5] Brachman, R. and Levesque, HJ. The Tractability of Subsumption in Frame-Based Description
Languages, AAAI-84.

[6] Derthick, M., Mundane reasoning by parallel constraint satisfaction, Ph.D. thesis, CMU-CS-88-182,
Carnegie Mellon University, Sept. 1988.

[7] Dolan, C., and Dyer, M., Parallel retrieval and application of conceptual knowledge, Technical
Report TR UCLA-AI-88-3, University of California, Los Angeles, Jan. 1988.

[8] Dolan, C., and Smolensky P., Implementing a connectionist production system using tensor products
Technical Report UCLA-AI-88-15, University of California, Los Angeles, CU-CS-411-88 University
of Colorado, 1988.

[9] Fanty, M.A., Learning in Structured Connectionist Networks. Ph.D. Dissertation, Computer Science
Department, University of Rochester, Rochester, NY. 1988.

[10] Feldman, J.A. Dynamic connections in neural networks, Bio-Cybernetics, 46:27-39, 1982.

19

[11] Feldman, J.A. and Ballard D.H. Connectionist models and their properties. Cognitive Science, 6 (3):

205-254, 1982.

[121 Fodor J.A. and Pylyshyn Z.W. Connectionism and cognitive architecture: A critical analysis. In

Connections and Symbols Steven Pinker and Jacques Mehler (eds.) The MIT Press, Cambridge,

MA. 1988.

[13] Frisch, A.M. and J.F. Allen, Knowledge retrieval as limited inference in D.W. Loveland(Ed.),

Lecture Notes in Computer Science: 6th Conference on Automated Deduction, Springer-Verlag,

New York, 1982.

[14] Hinton, G.E. and Ti. Sejnowski, Optimal perceptual inference, Proc. IEEE Computer Vision and

Pattern recognition Conference, pp. 448-453, Washington, DC, 1983.

[15] Kandel, ER. The Cellular Basis of Behavior. Freeman, San Francisco, CA. 1976.

[16] Kirkpatrick, S., C.D.Gelatt, an M.P. Vecchi, Optimization by simulated annealing, Science 220,

4598, pp. 671-680, 1983.

[17] Levesque, HJ., A logic of implicit and explicit belief, AAAI-84, pp. 198-202.

[18] Levesque, H. and Brachman, R., A fundamental tradeoff in knowledge representation and reasoning

in Readings in Knowledge Representation, R. Brachman and H. Levesque (eds.), Morgan Kaufman,

1985.

[19] McAllester, D., An outlook on truth maintenance, Al memo 551, MIT A Lab.,. 1980.

[20] Nilsson, NJ., Principles of Artficial Intelligence. Tioga Publishing Company, Palo Alto, CA. 1980.

[21] Pearl, J., Fusion, propagation and structuring in belief networks, ArtiJicial Intelligence, 29(3), 1986,

pp. 241-288.

[22] Shastri, L., The Relevance of Connectionism to Al: A representation and reasoning perspective.

In Advances in Connectionist and Neural Computation Theory, vol. 1., J. Barnden (ed.), Ablex

Publishing Company, Norwood, NJ. (To appear). (Also available as a Tech. Report from Computer

Science Department, University of Pennsylvania.)

[23] Shastri, L., Semantic networks : An evidential formulation and its connectionist realization; Pitman.

London/ Morgan Kaufman Los Altos, 1988.

[24] Shastri, L., A connectionist approach to knowledge representation and limited inference, Cognitive

Science, 12(3), pp. 331-392.

[25] Smolensky, P., Proper treatment of Connectionism, Behavioral and Brain Sciences, (1988) 11:1.

[26] Smolensky, P., On variable binding apd the representation of symbolic structures in connectionist

systems, Technical Report CU-CS-355-87, Department of Computer Science, University of Colorado

at Boulder, Feb. 1987.

20

[27] Touretzky, D. and Hinton, G., Symbols among neurons: Details of a connectionist inference archi-

tecture, Proceedings of IJCAI-85 pp. 238-243.

[28] Vlain, M., The restricted language architecture of a hybrid representation system, Proceedings of

IJCAI-85, pp. 547-551.

[29] von der Malsburg, C., Nervous structures with dynamical links, Berichte der Bunsen-Gelschaft fur

Physikakalische Chemie.

21

RULES PDAG

W(. U . (..M W P R S
P(...)& Q(...) & R(...)-T..

T(..) & S(.. -U(.)

.. .. (.

U

xV

Fig. 1 PDAG For An Example Set Of Rules

from dave boba, Al from mike

ORDEHITfrombobdick

:::O dave

4- frommik

A2A

Knowledge Encoded

HURT a6 forall(x,y,z)(ordcrhit(x,y,z)->
hit(y~z))

forall(x,y)(hit(x,y) -> hurt(y))

forall(x)(fclldownwx -> huri(x))

orderhit(bob,mikc,davc)
hit(mikc,davc)

Fig. An xampe Neworkhit(davc,dick)
Fig. An xampe Neworkelldown(bob)

4-from davebo
f

ORDERH-IT 01 Al 4-from mike t dick

4- from bO davc

~Dmike

-from dave

4,-A2 -4omA4v from
HI 3-FELLDOWN 2,1 A

A34from dave

Fig. 3 Timings for the query Hurt(dave)

a a&-b IMF-

PIC Pi INST

Fi.4 Modificr Link rig. 5 Rcprcscntatlon of a binary prcdicate P1

IM1P

m3 p INST

UMP

00INST

QI

Fig. 6 V 3 , 1~~)~Q(

IMP

Fig. 7 Vxl,z2 [P2(xl,x2) *Vyj~z Q2(xl,x2,j, ,G)

UMP

B3 g 82 Vz P2x)*VlQ(x 1 11J 1

tow/high at BC/

Inert) I~ia
low/high at INST or

"reset" 7 hi~ha iMP

Fig. 9 Computational Bechavior of the Abstract Prcd Nodc

_____________from a

P3 from It_

Fig. 10 Abstract Insmancer NOdle for 76 (M3(~~.)

to parent prednodes from parent prednodes to instancers

f 7-

frominstancers

from child Vpridnodes

to Mhid prednodes

Fig. I1I Realization of a Pred Node

Fig. 12 Realization of an Instancer HIOck

